首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5671篇
  免费   167篇
  国内免费   142篇
电工技术   114篇
技术理论   2篇
综合类   270篇
化学工业   586篇
金属工艺   551篇
机械仪表   239篇
建筑科学   478篇
矿业工程   268篇
能源动力   190篇
轻工业   205篇
水利工程   86篇
石油天然气   89篇
武器工业   10篇
无线电   268篇
一般工业技术   471篇
冶金工业   1549篇
原子能技术   68篇
自动化技术   536篇
  2024年   6篇
  2023年   216篇
  2022年   296篇
  2021年   317篇
  2020年   316篇
  2019年   234篇
  2018年   244篇
  2017年   68篇
  2016年   97篇
  2015年   85篇
  2014年   240篇
  2013年   241篇
  2012年   208篇
  2011年   333篇
  2010年   237篇
  2009年   252篇
  2008年   223篇
  2007年   243篇
  2006年   214篇
  2005年   198篇
  2004年   178篇
  2003年   195篇
  2002年   146篇
  2001年   117篇
  2000年   108篇
  1999年   209篇
  1998年   139篇
  1997年   147篇
  1996年   101篇
  1995年   67篇
  1994年   72篇
  1993年   68篇
  1992年   40篇
  1991年   38篇
  1990年   24篇
  1989年   16篇
  1988年   10篇
  1987年   8篇
  1986年   8篇
  1985年   1篇
  1984年   5篇
  1983年   11篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有5980条查询结果,搜索用时 15 毫秒
31.
Magnesium (Mg)-based nanocomposites owing to their low density and biocompatibility are being targeted for transportation and biomedical sectors. In order to support a sustainable environment, the prime aim of this study was to develop non-toxic magnesium-based nanocomposites for a wide spectrum of applications. To support this objective, cerium oxide nanoparticles (0.5?vol%, 1?vol%, and 1.5?vol%) reinforced Mg composites are developed in this study using blend-press-sinter powder metallurgy technique. The microstructural studies exhibited limited amounts of porosity in Mg and Mg-CeO2 samples (< 1%). Increasing presence of CeO2 nanoparticles (up to 1.5?vol%) led to a progressive increase in microhardness, dimensional stability, damping capacity and ignition resistance of magnesium. The compressive strengths increased with the increasing addition of the nanoparticles with a significant enhancement in the fracture strain (up to ~48%). Superior energy absorption was observed for all the composite samples prior to compressive fracture. Further, enhancement in thermal, mechanical and damping characteristics of pure Mg is correlated with microstructural changes due to the presence of the CeO2 nanoparticles.  相似文献   
32.
Phase equilibria in ZrO2-YO1.5-SiO2 (ZYS) and ZrO2-GdO1.5-SiO2 (ZGS) were experimentally assessed at 1400?°C and 1600?°C as they can offer insight on reactions between thermal barrier coatings (TBCs) based on ZrO2-YO1.5/GdO1.5 and molten silicate deposits in gas turbine engines. Features shared in both systems include the absence of ternary compounds and no ternary solubility in the binary phases. In ZYS however, a quaternary invariant reaction was observed that eliminates the zircon-disilicate equilibrium at higher temperatures. The results suggest no appreciable difference in the reactions between silica and thermal barrier oxides based on ZrO2-YO1.5 or ZrO2-GdO1.5, or environmental barrier coatings based on the corresponding Y/Gd silicates. The phase diagrams derived from these experiments are part of a broader effort to develop thermodynamic databases that can help guide the design of next-generation TBCs.  相似文献   
33.
《Planning》2018,(1)
罕见病是人类社会发展的沉重负担,对罕见病进行深入研究具有重要的社会意义和科学价值。中国人口基数巨大,为罕见病研究提供了广阔资源,同时也带来了巨大挑战。既往中国在罕见病领域取得了众多成就,同时也面临着研究力量分散、资源整合缺乏等问题。随着政府部门、学术机构、研究团体及个人对罕见病研究的重视及参与,中国罕见病研究正朝着协作、创新方向发展。未来的中国罕见病研究将从多个方面推进,为中国及世界应对罕见病挑战作出贡献。  相似文献   
34.
ABSTRACT

This paper quantifies the extent of co-location of innovation and production for industry clusters with varying knowledge intensity. If input-output, knowledge, and skill linkages are interdependent and geographically bounded, then we would expect innovation and production to be co-located in regional clusters. However, theory predicts that the degree of agglomeration benefits associated with co-location may vary across economic activities with different knowledge intensity. Using data from the U.S. Cluster Mapping Project, I develop measures of the co-location of innovation and production for 27 industry clusters, examining patterns across regions and over time (1998–2015) in the United States. I find that there is a significant co-location of innovation and production for many clusters, especially for those with higher knowledge intensity. This paper focuses on the Information Technology and Analytical Instruments cluster and the Automotive cluster to illustrate the co-location measures and the micro-geography of innovation and production.  相似文献   
35.
This article sounds the alarm that a significant build-out of efficient lighting and renewable energy technologies may be endangered by shortages of rare earths and rare earth permanent magnets. At the moment, China is the predominant supplier of both and its recent rare earth industrial policies combined with its own growing demand for rare earths have caused widespread concern. To diversify supplies, new mining—outside of China—is needed. But what many observers of the “rare earth problem” overlook is that China also dominates in (1) the processing of rare earths, particularly the less abundant heavy rare earths, and (2) the supply chains for permanent magnets. Heavy rare earths and permanent magnets are critical for many renewable energy technologies, and it will require decades to develop new non-Chinese deposits, processing capacity, and supply chains. This article clarifies several misconceptions, evaluates frequently proposed solutions, and urges policy makers outside of China to undertake measures to avert a crisis, such as greater support for research and development and for the cultivation of intellectual capital.  相似文献   
36.
The glass-forming regions of tellurium-gadolinium-tungsten ternary system prepared at 1000℃for 60 min were firstly determined.To improve density,the full replacement of lutetium for gadolinium to form Tb3+-activated tellurium-lutetium-tungsten glasses with the composition of 64 TeO2-20 WO3-(16-y)Lu2O3-yTb2O3were designed for scintillation application.The concentration-dependent optical properties of Tb3+-activated tellurium-lutetium-tungsten glasses were fully investigated by transmittance,excitation and emission spectra,together with the luminescence decay curves.The energy transfer mechanism was discussed according to Huang’s rule.The optimized 4 mol%Tb2O3activated tellurium-lutetium-tungsten glasses with the density of 6.49 g/cm3and the lifetime of 0.551 ms are developing to be suitable for the potential detection of slow events in the future work.  相似文献   
37.
Rare earths(REs) play a key role in distorting spinel structure by creating some defects at the lattice sites and make them suitable for magnetodielectric applications.In the present study,the nanoferrites of CuRE_(0.02)Fe_(1.98)O_4,where REs=Y~(3+),Yb~(3+),Gd~(3+),were prepared using one step sol-gel method.The prepared samples are copper ferrite(CFO),yttrium doped copper ferrite(Y-CFO),ytterbium doped copper ferrite(Yb-CFO) and gadolinium doped copper ferrite(Gd-CFO),respectively.The single-phase structure of all the REs doped nanoferrites was determined by X-ray diffraction(XRD) analysis.The porosity,agglomerations and grain size of the REs doped copper ferrite were examined using field emission scanning electron microscopy(FESEM) analysis.Fourier transform infrared spectroscopy(FTIR)elaborates the phase formation and environmental effects on the REs doped nanoparticles(NPs).The recorded room temperature M-H loops from a vibrating sample magnetometer(VSM) elucidate the magnetic properties of the REs doped spinel nanoferrites.The magnetic saturation(M_s) was calculated in the range of 23.08 to 51.78 emu/g.The calculated coercivity values(272.6 to 705.60 Oe) confirm the soft magnetic behavior of REs doped copper ferrites.Furthermore,the electromagnetic and dielectric properties were assessed using a Vector network analyzer(VNA) from 1 to 6 GHz.The permeability,permittivity,dielectric tangent loss and electric modulus of the REs doped spinel ferrites illustrate that the prepared NPs may be suitable for microwave and high frequency applications.  相似文献   
38.
In this paper,polycrystalline samples of Bi_(1-x)Sm_xFeO~3(x=0,0.05,0.1,0.15) were successfully synthesized by sol-gel method.The effects of Sm concentration on the crystal structure,morphology,chemical states,magnetic properties and microwave absorption performance were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),a vibrating sample magnetometer(VSM) and a Vector network analyzer(VNA),respectively.The results show that the rare earth Sm doping causes the crystal structure to change.When x≤0.1,Bi_(1-x)Sm_xFeO_3 is the distorted rhombohedral structure with space group R3 c.With the increase of Sm doping amount to x=0.15,the phase structure of Bi_(1-x)Sm_xFeO_3 changes from rhombohedral structure to cubic structure with the space group Pm3 m.The particle size decreases with the increase of the Sm doping amount.The analysis results show that Sm doping can effectively reduce the oxygen vacancies and significantly improve its magnetic properties.The results exhibit that moderately doped rare earth Sm element can effectively improve microwave absorption properties of Bi_(1-x)Sm_xFeO_3 powders.When Sm doping amount of x is 0.1,the Bi_(0.9)Sm_(0.1) FeO_3 compound has good microwave absorption performance,and the minimum reflection loss value of Bi_(0.9)Sm_(0.1)FeO_3 powder reaches about-32.9 dB at11.7 GHz,and its effective absorption bandwidth(RL -10 dB) is 2.6 GHz with the optimal matching thickness of 2.0 mm.  相似文献   
39.
In recent years, the Industry 4.0 concept brings new demands and trends in different areas; one of them is distributing computational power to the cloud. This concept also introduced the Reference Architectural Model for Industry 4.0 (RAMI 4.0). The efficiency of data communications within the RAMI 4.0 model is a critical issue. Aiming to evaluate the efficiency of data communication in the Cloud Based Cyber-Physical Systems (CB-CPS), this study analyzes the periods and data amount required to communicate with individual hierarchy levels of the RAMI 4.0 model. The evaluation of the network properties of the communication protocols eligible for CB-CPS is presented. The network properties to different cloud providers and data centers’ locations have been measured and interpreted. To test the findings, an architecture for cloud control of laboratory model was proposed. It was found that the time of the day; the day of the week; and data center utilization have a negligible impact on latency. The most significant impact lies in the data center distance and the speed of the communication channel. Moreover, the communication protocol also has impact on the latency. The feasibility of controlling each level of RAMI 4.0 through cloud services was investigated. Experimental results showed that control is possible in many solutions, but these solutions mostly cannot depend just on cloud services. The intelligence on the edge of the network will play a significant role. The main contribution is a thorough evaluation of different cloud providers, locations, and communication protocols to provide recommendations sufficient for different levels of the RAMI 4.0 architecture.  相似文献   
40.
Solid oxide fuel cell is a promising energy conversion system which converts chemical energy into electrical energy directly. Electrolyte is the key component and determines the working temperature. In this paper,ceria and scandia co-doped zirconia electrolytes sintered from 1300 to 1550 ℃ were chosen as research objects. Scanning electron microscopy, X-ray diffraction and transmission electron microscopy were performed to characterize the ceramic samples. The effects of grain size and grain boundary element segregation on the electrical conductivity were focused. Electrochemical impedance spectroscopy was used to calculate the bulk, grain boundary and specific grain boundary conductivity. Results show that the bulk and grain boundary ionic conductivity increases with the increasing grain size.However, the specific grain boundary conductivity decreases with the increasing grain size. This is explained by the fact that Sc~(3+) is segregated at the grain boundary, which leads to higher oxygen vacancy concentration when sintered at lower temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号